【论文笔记】利用平滑度加速分布式优化——梯度跟踪法(Gradient Tracking)
文章目录
写在前面
原论文:Harnessing Smoothness to Accelerate Distributed Optimization.
本文是Qu 20181的笔记,主要是对离散系统分布式梯度跟踪算法证明过程的总结。
问题描述和算法
问题描述
min x ∈ R d f ( x ) = 1 n ∑ i = 1 n f i ( x ) min_{xinmathbb R^d} f(x)=frac{1}{n}sum_{i=1}^n f_i(x) x∈Rdminf(x)=n1i=1∑nfi(x)
假设1: f i f_i fi是 α alpha α强凸和 β beta β光滑的函数。即
f i ( y ) − f i ( x ) ≥ ∇ f i ( x ) T ( y − x ) + α 2 ∥ y − x ∥ 2 ∥ ∇ f i ( x ) − ∇ f i ( y ) ∥ ≤ β ∥ x − y ∥ begin{aligned} f_i(y)-f_i(x)&geq nabla f_i(x)^T(y-x)+frac{alpha}{2}|y-x|^2\ |nabla f_i(x)-nabla f_i(y)|&leq beta|x-y| end{aligned} fi(y)−fi(x)∥∇fi(x)−∇fi(y)∥≥∇fi(x)T(y−x)+2α∥y−x∥2≤β∥x−y∥
离散系统分布式优化算法
x i ( t + 1 ) = ∑ i = 1 n w i j x j ( t ) − η s i ( t ) s i ( t + 1 ) = ∑ j = 1 n w i j s j ( t ) + ∇ f i ( x i ( t + 1 ) ) − ∇ f i ( x i ( t ) ) ( 1 ) begin{aligned} x_i(t+1)&=sum_{i=1}^nw_{ij}x_j(t)-eta s_i(t)\ s_i(t+1)&=sum_{j=1}^nw_{ij}s_j(t)+nabla f_i(x_i(t+1))-nabla f_i(x_i(t)) end{aligned}qquad (1) xi(t+1)si(t+1)=i=1∑nwijxj(t)−ηsi(t)=j=1∑nwijsj(t)+∇fi(xi(t+1))−∇fi(xi(t))(1)
其中 x i ( t ) ∈ R 1 × d x_i(t)in mathbb R^{1times d} xi(t)∈R1×d, s i ( t ) ∈ R 1 × d s_i(t)in mathbb R^{1times d} si(t)∈R1×d写成行向量形式,同时满足 s i ( 0 ) = ∇ f i ( x i ( 0 ) ) s_i(0)=nabla f_i(x_i(0)) si(0)=∇fi(xi(0))。可以看出, s i ( t ) s_i(t) si(t)用来跟踪梯度的均值,即 1 n ∇ f i ( x i ( t ) ) frac{1}{n}nabla f_i(x_i(t)) n1∇fi(xi(t))。上述算法称为分布式梯度跟踪法(distributed gradient tracking, DGT)。
收敛性证明
给定 W W W为双随机(doubly stochastic)矩阵。算法(1)矩阵形式
x ( t + 1 ) = W x ( t ) − η s ( t ) s ( t + 1 ) = W s ( t ) + ∇ ( t + 1 ) − ∇ ( t ) ( 2 ) begin{aligned} x(t+1)&=W x(t)-eta s(t)\ s(t+1)&=W s(t)+nabla(t+1)-nabla (t) end{aligned}qquad (2) x(t+1)s(t+1)=Wx(t)−ηs(t)=Ws(t)+∇(t+1)−∇(t)(2)
其中 s ( 0 ) = ∇ ( 0 ) s(0)=nabla (0) s(0)=∇(0), ∇ ∈ R n × d nablainmathbb R^{ntimes d} ∇∈Rn×d是梯度 ∇ f i ( x i ( t ) ) nabla f_i(x_i(t)) ∇fi(xi(t))以行向量形式堆叠的矩阵,同样的 x ∈ R n × d xinmathbb R^{ntimes d} x∈Rn×d, s ∈ R n × d sinmathbb R^{ntimes d} s∈Rn×d也是以行向量形式堆叠的矩阵。
令 x ˉ ( t ) = ( 1 / n ) 1 n T x ( t ) bar x(t)=(1/n)1_n^T x(t) xˉ(t)=(1/n)1nTx(t), s ˉ ( t ) = ( 1 / n ) 1 n T s ( t ) bar s(t)=(1/n)1_n^T s(t) sˉ(t)=(1/n)1nTs(t), g ( t ) = ( 1 / n ) 1 n T ∇ ( t ) g(t)=(1/n)1_n^T nabla(t) g(t)=(1/n)1nT∇(t)。
引理1(Lemma 7):以下等式成立:
证明:式(2)中两边同乘 ( 1 / n ) 1 n T (1/n)1_n^T (1/n)1nT可得 g ( t ) = s ˉ ( t ) = ( 1 / n ) 1 n T s ( t ) g(t)=bar s(t)=(1/n)1_n^T s(t) g(t)=sˉ(t)=(1/n)1nTs(t),因为 s ( 0 ) = ∇ ( 0 ) s(0)=nabla (0) s(0)=∇(0)。同样的, x ˉ ( t + 1 ) = x ˉ ( t ) − η g ( t ) bar x(t+1)=bar x(t)-eta g(t) xˉ(t+1)=xˉ(t)−ηg(t)。
下面证明收敛性,证明思路是分别证明梯度跟踪误差、一致性误差和最优解误差的收敛性,最后证明目标误差的收敛性。
第一步,先看梯度跟踪误差 ∥ s ( k ) − 1 n g ( k ) ∥ |s(k)-1_ng(k)| ∥s(k)−1ng(k)∥,有
s ( k ) − 1 n g ( k ) = [ W s ( k − 1 ) − 1 n g ( k − 1 ) ] + [ ∇ ( k ) − ∇ ( k − 1 ) ] − 1 n [ g ( k ) − g ( k − 1 ) ] . ( 3 ) s(k)-1_ng(k)=[W s(k-1)-1_ng(k-1)]+[nabla(k)-nabla(k-1)]-1_n[g(k)-g(k-1)].qquad (3) s(k)−1ng(k)=[Ws(k−1)−1ng(k−1)]+[∇(k)−∇(k−1)]−1n[g(k)−g(k−1)].(3)
令 σ ∈ ( 0 , 1 ) sigmain(0,1) σ∈(0,1)是 W − ( 1 / n ) 1 n 1 n T W-(1/n)1_n1_n^T W−(1/n)1n1nT的谱范数(spectral norm)。对任意 ω ∈ R n omegain mathbb R^n ω∈Rn,都有
∥ W ω − ( 1 / n ) 1 n 1 n T ω ∥ = ∥ ( W − ( 1 / n ) 1 n 1 n T ) ( ω − ( 1 / n ) 1 n 1 n T ω ) ∥ ≤ σ ∥ ω − ( 1 / n ) 1 n 1 n T ω ∥ . ( 4 ) |Womega-(1/n)1_n1_n^T omega|=|(W-(1/n)1_n1_n^T)(omega-(1/n)1_n1_n^T omega)|leq sigma|omega-(1/n)1_n1_n^T omega|.qquad (4) ∥Wω−(1/n)1n1nTω∥=∥(W−(1/n)1n1nT)(ω−(1/n)1n1nTω)∥≤σ∥ω−(1/n)1n1nTω∥.(4)
由式(4)和引理1,式(3)可以取范数得到
∥ s ( k ) − 1 n g ( k ) ∥ ≤ ∥ W s ( k − 1 ) − 1 n g ( k − 1 ) ∥ + ∥ [ ∇ ( k ) − ∇ ( k − 1 ) ] − 1 n [ g ( k ) − g ( k − 1 ) ] ∥ ≤ σ ∥ s ( k − 1 ) − 1 n g ( k − 1 ) ∥ + ∥ [ ∇ ( k ) − ∇ ( k − 1 ) ] − 1 n [ g ( k ) − g ( k − 1 ) ] ∥ . ( 5 ) begin{aligned} |s(k)-1_ng(k)|&leq |Ws(k-1)-1_ng(k-1)|+|[nabla(k)-nabla(k-1)]-1_n[g(k)-g(k-1)]|\ &leq sigma|s(k-1)-1_ng(k-1)|+|[nabla(k)-nabla(k-1)]-1_n[g(k)-g(k-1)]|. end{aligned}qquad (5) ∥s(k)−1ng(k)∥≤∥Ws(k−1)−1ng(k−1)∥+∥[∇(k)−∇(k−1)]−1n[g(k)−g(k−1)]∥≤σ∥s(k−1)−1ng(k−1)∥+∥[∇(k)−∇(k−1)]−1n[g(k)−g(k−1)]∥.(5)
式(5)后半部分可得
∥ [ ∇ ( k ) − ∇ ( k − 1 ) ] − 1 n [ g ( k ) − g ( k − 1 ) ] ∥ 2 = ∥ ∇ ( k ) − ∇ ( k − 1 ) ∥ 2 + ∥ ( 1 / n ) 1 n 1 n T ( ∇ ( k ) − ∇ ( k − 1 ) ) ∥ 2 − ( ∇ ( k ) − ∇ ( k − 1 ) ) T ( 1 / n ) 1 n 1 n T ( ∇ ( k ) − ∇ ( k − 1 ) ) ≤ ∥ ∇ ( k ) − ∇ ( k − 1 ) ∥ 2 . begin{aligned} |[nabla(k)-nabla(k-1)]-1_n[g(k)-g(k-1)]|^2&=|nabla(k)-nabla(k-1)|^2+|(1/n)1_n1_n^T(nabla (k)-nabla(k-1))|^2\ &quad -(nabla(k)-nabla(k-1))^T(1/n)1_n1_n^T(nabla (k)-nabla(k-1))\ &leq |nabla(k)-nabla(k-1)|^2. end{aligned} ∥[∇(k)−∇(k−1)]−1n[g(k)−g(k−1)]∥2=∥∇(k)−∇(k−1)∥2+∥(1/n)1n1nT(∇(k)−∇(k−1))∥2−(∇(k)−∇(k−1))T(1/n)1n1nT(∇(k)−∇(k−1))≤∥∇(k)−∇(k−1)∥2.
代入(3)再结合假设1得到
∥ s ( k ) − 1 n g ( k ) ∥ ≤ σ ∥ s ( k − 1 ) − 1 n g ( k − 1 ) ∥ + β ∥ x ( k ) − x ( k − 1 ) ∥ . ( 6 ) |s(k)-1_ng(k)|leq sigma|s(k-1)-1_ng(k-1)|+beta|x(k)-x(k-1)|.qquad (6) ∥s(k)−1ng(k)∥≤σ∥s(k−1)−1ng(k−1)∥+β∥x(k)−x(k−1)∥.(6)
第二步,同样的,一致性误差由式(4)可得
∥ x ( k ) − 1 n x ˉ ( k ) ∥ = ∥ W x ( k − 1 ) − η s ( k − 1 ) − x ˉ ( k − 1 ) + η 1 n g ( k − 1 ) ∥ ≤ σ ∥ x ( k − 1 ) − x ˉ ( k − 1 ) ∥ + η ∥ s ( k − 1 ) − 1 n g ( k − 1 ) ∥ ( 7 ) begin{aligned} |x(k)-1_nbar x(k)|&= |Wx(k-1)-eta s(k-1)-bar x(k-1)+eta1_n g(k-1)|\ &leq sigma|x(k-1)-bar x(k-1)|+eta|s(k-1)-1_ng(k-1)| end{aligned}qquad (7) ∥x(k)−1nxˉ(k)∥=∥Wx(k−1)−ηs(k−1)−xˉ(k−1)+η1ng(k−1)∥≤σ∥x(k−1)−xˉ(k−1)∥+η∥s(k−1)−1ng(k−1)∥(7)
定义 f = 1 n ∑ i = 1 n f i f=frac{1}{n}sum_{i=1}^n f_i f=n1∑i=1nfi在 x ˉ ( t ) bar x(t) xˉ(t)的梯度向量为 h ( t ) = ∇ f ( x ˉ ( t ) ) ∈ R n × d h(t)=nabla f(bar x(t))inmathbb R^{ntimes d} h(t)=∇f(xˉ(t))∈Rn×d。
第三步,再看最优解误差 ∥ x ˉ − x ∗ ∥ |bar x-x^*| ∥xˉ−x∗∥,得到
x ˉ ( k ) = x ˉ ( k − 1 ) − η h ( k − 1 ) − η [ g ( k − 1 ) − h ( k − 1 ) ] . ( 8 ) bar x(k)=bar x(k-1)-eta h(k-1)-eta[g(k-1)-h(k-1)].qquad (8) xˉ(k)=xˉ(k−1)−ηh(k−1)−η[g(k−1)−h(k−1)].(8)
引理2(Lemma 3.11 2):如果 f : R d → R f:mathbb R^dtomathbb R f:Rd→R满足假设1,那么 ∀ x , y ∈ R d forall x,yinmathbb R^d ∀x,y∈Rd,有
( ∇ f ( x ) − ∇ f ( y ) ) T ( x − y ) ≥ α β α + β ∥ x − y ∥ 2 + 1 α + β ∥ ∇ f ( x ) − ∇ f ( y ) ∥ 2 . (nabla f(x)-nabla f(y))^T(x-y)geq frac{alphabeta}{alpha+beta}|x-y|^2+frac{1}{alpha+beta}|nabla f(x)-nabla f(y)|^2. (∇f(x)−∇f(y))T(x−y)≥α+βαβ∥x−y∥2+α+β1∥∇f(x)−∇f(y)∥2.
引理3: ∀ x ∈ R d forall xinmathbb R^d ∀x∈Rd,定义 x + = x − η ∇ f ( x ) x^+=x-eta nabla f(x) x+=x−η∇f(x),其中 0 < η < 2 β 0
∥ x + − x ∗ ∥ ≤ λ ∥ x − x ∗ ∥ |x^+-x^*|leq lambda |x-x^*| ∥x+−x∗∥≤λ∥x−x∗∥
其中 λ = max ( ∣ 1 − η α ∣ , ∣ 1 − η β ∣ ) lambda =max(|1-eta alpha|,|1-eta beta|) λ=max(∣1−ηα∣,∣1−ηβ∣)。
证明:如果 0 < η ≤ 2 α + β 0 由引理3和式(8)可得 第四步,看 ∥ x ( k ) − x ( k − 1 ) ∥ |x(k)-x(k-1)| ∥x(k)−x(k−1)∥的有界性,由假设1得到 因为 z ( k ) z(k) z(k)和 G ( η ) G(eta) G(η)非负,可以直接迭代展开得到 Qu, G., & Li, N. (2018). Harnessing smoothness to accelerate distributed optimization. IEEE Transactions on Control of Network Systems, 5(3), 1245–1260. https://doi.org/10.1109/TCNS.2017.2698261 ↩︎ Bubeck, S. (2015). Convex optimization: Algorithms and complexity. Foundations and Trends in Machine Learning, 8(3–4), 231–357. https://doi.org/10.1561/2200000050. ↩︎ R. A. Horn and C. R. Johnson. (2012). Matrix Analysis. Cambridge. U.K.: Cam- bridge Univ. Press. ↩︎
如果 2 α + β < η < 2 β frac{2}{alpha+beta}
∥ x ˉ ( k ) − x ∗ ∥ ≤ λ ∥ x ˉ ( k − 1 ) − x ∗ ∥ + η ∥ g ( k − 1 ) − h ( k − 1 ) ∥ ≤ λ ∥ x ˉ ( k − 1 ) − x ∗ ∥ + ( η β / n ) ∥ x ( k − 1 ) − 1 n x ˉ ( k − 1 ) ∥ ( 9 ) begin{aligned} |bar x(k)-x^*|&leq lambda |bar x(k-1)-x^*|+eta |g(k-1)-h(k-1)|\ &leq lambda |bar x(k-1)-x^*|+(etabeta/sqrt{n}) |x(k-1)-1_nbar x(k-1)| end{aligned}qquad(9) ∥xˉ(k)−x∗∥≤λ∥xˉ(k−1)−x∗∥+η∥g(k−1)−h(k−1)∥≤λ∥xˉ(k−1)−x∗∥+(ηβ/n )∥x(k−1)−1nxˉ(k−1)∥(9)
其中 λ = max ( ∣ 1 − η α ∣ , ∣ 1 − η β ∣ ) lambda =max(|1-eta alpha|,|1-eta beta|) λ=max(∣1−ηα∣,∣1−ηβ∣)。
∥ h ( k − 1 ) ∥ = ∥ ∇ f ( x ˉ ( k − 1 ) ) ∥ ≤ β ∥ x ˉ ( k − 1 ) − x ∗ ∥ . |h(k-1) |=|nabla f(bar x(k-1)) |leq beta|bar x(k-1)-x^* |. ∥h(k−1)∥=∥∇f(xˉ(k−1))∥≤β∥xˉ(k−1)−x∗∥.
结合式(9)的方法
∥ s ( k − 1 ) ∥ ≤ ∥ s ( k − 1 ) − 1 n g ( k − 1 ) ∥ + ∥ 1 n g ( k − 1 ) − 1 n h ( k − 1 ) ∥ + ∥ 1 n h ( k − 1 ) ∥ ≤ ∥ s ( k − 1 ) − 1 n g ( k − 1 ) ∥ + β ∥ x ( k − 1 ) − 1 n x ˉ ( k − 1 ) ∥ + β n ∥ x ˉ ( k − 1 ) − x ∗ ∥ . begin{aligned} |s(k-1)|&leq |s(k-1)-1_ng(k-1) |+|1_ng(k-1)-1_n h(k-1) |+|1_n h(k-1)|\ &leq |s(k-1)-1_ng(k-1) |+beta|x(k-1)-1_n bar x(k-1) |+beta sqrt{n}|bar x(k-1)-x^*|. end{aligned} ∥s(k−1)∥≤∥s(k−1)−1ng(k−1)∥+∥1ng(k−1)−1nh(k−1)∥+∥1nh(k−1)∥≤∥s(k−1)−1ng(k−1)∥+β∥x(k−1)−1nxˉ(k−1)∥+βn ∥xˉ(k−1)−x∗∥.
因此
∥ x ( k ) − x ( k − 1 ) ∥ = ∥ W x ( k − 1 ) − x ( k − 1 ) − η s ( k − 1 ) ∥ = ∥ ( W − I ) ( x ( k − 1 ) − 1 n x ˉ ( k − 1 ) ) − η s ( k − 1 ) ∥ ≤ 2 ∥ ( x ( k − 1 ) − 1 n x ˉ ( k − 1 ) ) ∥ + η ∥ s ( k − 1 ) ∥ ≤ η ∥ s ( k − 1 ) − 1 n g ( k − 1 ) ∥ + ( η β + 2 ) ∥ x ( k − 1 ) − 1 n x ˉ ( k − 1 ) ∥ + η β n ∥ x ˉ ( k − 1 ) − x ∗ ∥ . begin{aligned} |x(k)-x(k-1) |&=|Wx(k-1)-x(k-1)-eta s(k-1) |\ &=|(W-I)(x(k-1)-1_nbar x(k-1))-eta s(k-1) |\ &leq 2|(x(k-1)-1_nbar x(k-1))|+eta|s(k-1) |\ &leq eta|s(k-1)-1_ng(k-1) |\ &quad+(etabeta+2)|x(k-1)-1_n bar x(k-1) |+etabeta sqrt{n}|bar x(k-1)-x^*|. end{aligned} ∥x(k)−x(k−1)∥=∥Wx(k−1)−x(k−1)−ηs(k−1)∥=∥(W−I)(x(k−1)−1nxˉ(k−1))−ηs(k−1)∥≤2∥(x(k−1)−1nxˉ(k−1))∥+η∥s(k−1)∥≤η∥s(k−1)−1ng(k−1)∥+(ηβ+2)∥x(k−1)−1nxˉ(k−1)∥+ηβn ∥xˉ(k−1)−x∗∥.
将上式代入(6)得到
∥ s ( k ) − 1 n g ( k ) ∥ ≤ ( σ + β η ) ∥ s ( k − 1 ) − 1 n g ( k − 1 ) ∥ + β ( η β + 2 ) ∥ x ( k − 1 ) − 1 n x ˉ ( k − 1 ) ∥ + η β 2 n ∥ x ˉ ( k − 1 ) − x ∗ ∥ ( 10 ) begin{aligned} |s(k)-1_n g(k)|&leq (sigma+beta eta)|s(k-1)-1_n g(k-1) |\ &quad +beta(eta beta+2)|x(k-1)-1_n bar x(k-1) |+etabeta^2 sqrt{n}|bar x(k-1)-x^*| end{aligned}qquad (10) ∥s(k)−1ng(k)∥≤(σ+βη)∥s(k−1)−1ng(k−1)∥+β(ηβ+2)∥x(k−1)−1nxˉ(k−1)∥+ηβ2n ∥xˉ(k−1)−x∗∥(10)
结合(7)(9)和(10)得到
z ( k ) ≤ G ( η ) k z ( 0 ) . z(k)leq G(eta)^kz(0). z(k)≤G(η)kz(0).
因为 G ( η ) G(eta) G(η)非负, G ( η ) 2 G(eta)^2 G(η)2为正,所以 G ( η ) k G(eta)^k G(η)k每一项都是 O ( ρ ( G ( η ) ) k ) O(rho(G(eta))^k) O(ρ(G(η))k)3。 z ( h ) z(h) z(h)每一项以 ρ ( G ( η ) ) k rho(G(eta))^k ρ(G(η))k速度收敛。
标签:
相关文章
-
无相关信息